
Remarks on completeness of many-electron Sturmians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 4553

(http://iopscience.iop.org/0305-4470/33/24/310)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 4553–4559. Printed in the UK PII: S0305-4470(00)12390-X

Remarks on completeness of many-electron Sturmians

Radosław Szmytkowski
Atomic Physics Division, Faculty of Applied Physics and Mathematics, Technical University of
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Abstract. A question of completeness of a discrete many-electron Sturmian set proposed in a
series of recent publications is considered. It is shown that already in the simplest case of a
two-electron system the proposed Sturmians do not form a complete set since the spectrum of
a generating eigenproblem is mixed: apart from discrete eigenvalues, with which the discrete
Sturmians are associated as corresponding eigenfunctions, the spectrum also contains a continuum
part. A peculiar feature of the spectrum found is that infinitely many discrete eigenvalues are
embedded in the continuum.

1. Introduction

In the theory of one-electron atomic systems the discrete Coulomb Sturmian functions have
been proved to be of particular value (e.g. [1–6] and references therein). It is natural to expect
that N -electron analogues of these functions might be useful in the theory of many-electron
atomic systems and, in response to this expectation, over the last decade two different methods
of constructing many-electron Coulomb Sturmians have been proposed by Avery, Aquilanti
and their collaborators [7–14].

In the first method [7–10], one defines the N -electron Sturmians as solutions to the
Hermitian eigenvalue problem[

− h̄2

2m
�− µ

Ze2

R

]
	(E,R) = E	(E,R) (1)

R	(E,R)
R→0−→ 0 R(3N−1)/2	(E,R) bounded for R → ∞ (2)

where R stands collectively for coordinates of the electrons, R is the N -electron hyper-radius
defined by

R2 =
N∑
i=1

r2
i (3)

with ri denoting the position vector of the ith electron,� is a 3N -dimensional Laplace operator,
m and e are the electron mass and the elementary charge, respectively, Z > 0 and E < 0 are
fixed parameters and µ is an eigenvalue of the problem. It is known [7–10] that eigensolutions
to the problem (1) and (2) form a discrete set which is complete in the space of N -electron
functions. The many-electron Sturmians obtained by solving equations (1) and (2) are currently
tested as a basis set in computations of atomic structures [15].
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In a recent series of publications [11–14], a method of obtaining an alternative set of
many-electron Sturmians has been proposed, namely by solving the Hermitian eigenproblem[
− h̄2

2m

N∑
i=1

�i − µ

N∑
i=1

Ze2

ri

]
�(E,R) = E�(E,R) (4)

ri�(E,R)
ri→0−→ 0 ri�(E,R) bounded for ri → ∞ (i = 1, . . . , N) (5)

where �i is the three-dimensional Laplace operator with respect to coordinates of the ith
electron, ri = |ri |, the parameters m, e, Z and E are defined as in equation (1) and µ is an
eigenvalue of the problem. Discrete eigenfunctions of the problem (4) and (5) have been found
in [11–14] and applied as a variational basis in exemplary numerical calculations of atomic
properties.

If any functional set is to be used as a variational basis in atomic physics or quantum
chemistry, the question about its completeness is of extreme importance [16]. Since for the
discreteN -electron Sturmians generated by equations (4) and (5) this problem has not yet been
considered, we study it in this paper. For brevity, we restrict our considerations to the simplest
but sufficiently representative case of a two-electron atomic system. Utilizing a criterion of
completeness of a set of eigenfunctions of a Hermitian differential eigenproblem which states
that such a set is complete if it comprises all eigenfunctions of the problem, we show that
the set proposed in [11–14] is incomplete since a spectrum of eigenvalues of the generating
eigenproblem is mixed: apart from discrete eigenvalues, with which the proposed Sturmians
are associated as corresponding eigenfunctions, the spectrum also contains a continuum of
eigenvalues. (A peculiar feature of this spectrum is that infinitely many discrete eigenvalues
are embedded in the continuum.) Thus a complete two-electron Sturmian set is formed by
eigenfunctions corresponding to discrete eigenvalues together with eigenfunctions associated
with continuous eigenvalues. Special care is therefore needed when linear combinations of
only discrete Sturmians are to be used as trial functions in variational computations.

2. The two-electron Sturmians

Consider the eigenvalue problem constituted by the differential equation[
− h̄2

2m
�1 − h̄2

2m
�2 − µ

Ze2

r1
− µ

Ze2

r2

]
�(E; r1, r2) = E�(E; r1, r2) (6)

augmented by the conditions

ri�(E; r1, r2)
ri→0−→ 0 ri�(E; r1, r2) bounded for ri → ∞ (i = 1, 2) (7)

with fixed parameters Z > 0 and E < 0 and with the parameter µ chosen as an eigenvalue.
Hermiticity of the eigenproblem guarantees that all its eigenvalues are real.

Equation (6) separates in r1 and r2, i.e. it possesses particular product solutions of the
form

�ab(E; r1, r2) = φa(E; r1)φb(E; r2) (8)

with single-electron spin-orbitals {φc(E; r)} to be determined. According to [11–14], once a
set of solutions (8) to the eigenproblem (6) and (7) is found, the two-electron Schrödinger–
Coulomb Sturmian functions are defined as antisymmetrized products of the form

Â�ab(E; r1, r2) = φa(E; r1)φb(E; r2)− φb(E; r1)φa(E; r2) = −Â�ba(E; r1, r2). (9)
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It is clear that if �ab(E; r1, r2) is an eigenfunction of (6) and (7) corresponding to the
eigenvalue µab, the Sturmian Â�ab(E; r1, r2) is also an eigenfunction of (6) and (7)
corresponding to the same eigenvalue.

To determine the single-electron spin-orbitals, we substitute equation (8) into equation (6).
This yields

1

φa(E; r1)

[
− h̄2

2m
�1 − µ

Ze2

r1

]
φa(E; r1)

= − 1

φb(E; r2)

[
− h̄2

2m
�2 − µ

Ze2

r2
− E

]
φb(E; r2) (10)

and, consequently,[
− h̄2

2m
�1 − µ

Ze2

r1

]
φa(E; r1) = Eaφa(E; r1) (11a)

[
− h̄2

2m
�2 − µ

Ze2

r2

]
φb(E; r2) = Ebφb(E; r2) (11b)

where the separation constants Ea and Eb are related by

Ea + Eb = E < 0. (12)

The boundary conditions (7) imply the separated boundary conditions

r1φa(E; r1)
r1→0−→ 0 r1φa(E; r1) bounded for r1 → ∞ (13a)

r2φb(E; r2)
r2→0−→ 0 r2φb(E; r2) bounded for r2 → ∞. (13b)

In further considerations it is useful to employ spherical systems of coordinates for r1 and r2

(though it should be mentioned that spatial parabolic or elliptic coordinates might be used as
well) and separate out angular and spin variables, seeking solutions to equations (11a) and
(11b) in the forms

φa(E; r1) = 1

r1
Pla (E; r1)Ylamla (r̂1)χ 1

2msa
(1) (14a)

φb(E; r2) = 1

r2
Plb (E; r2)Ylbmlb (r̂2)χ 1

2msb
(2) (14b)

where {Ylml (r̂)} are spherical harmonics and {χ 1
2ms

} are electron spin eigenfunctions. The
radial functions Pla (E; r1) and Plb (E; r2) obey the ordinary second-order equations[

− h̄2

2m

d2

dr2
1

+
h̄2

2m

la(la + 1)

r2
1

− µ
Ze2

r1

]
Pla (E; r1) = EaPla (E; r1) (15a)

[
− h̄2

2m

d2

dr2
2

+
h̄2

2m

lb(lb + 1)

r2
2

− µ
Ze2

r2

]
Plb (E; r2) = EbPlb (E; r2) (15b)

where the parameters µ, Ea and Eb should be adjusted so that the boundary conditions

Pla (E; r1) r1→0−→ 0 Pla (E; r1) bounded for r1 → ∞ (16a)

Plb (E; r2) r2→0−→ 0 Plb (E; r2) bounded for r2 → ∞ (16b)
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and the constraint (12) are satisfied. We shall achieve this goal within two steps: (a) considering
µ as a fixed parameter and the separation constants Ea and Eb as adjustable quantities, we
find such values of the latter that corresponding solutions to the system (15a) and (15b) obey
the boundary conditions (16a) and (16b); (b) since Ea and Eb determined in that way are
functions of µ and, in general, do not obey (12), in the second step we adjust µ so that the
latter constraint is satisfied.

To proceed further, we have to consider the cases µ � 0 and µ > 0 separately.

2.1. The case µ � 0

In this case equations (15a)–(16b) constitute either radial free-particle problems (if µ = 0)
or radial repulsive Coulomb problems (if µ < 0). In either case admissible values of the
separation constants are continuous and given by

Ea > 0 Eb > 0. (17)

Since both are positive, it is clear that there exists no such µ � 0 that the constraint (12) is
satisfied. Consequently, there are no non-positive eigenvalues to the problem (6) and (7).

2.2. The case µ > 0

In this case equations (15a)–(16b) constitute radial attractive Coulomb problems. Therefore,
spectra of the separation constants are mixed, i.e. they contain both discrete and continuous
parts, and are given by

Ea ∈
{
− µ2Z2e2

2(na + la + 1)2a0

}
na=0,1,2,...

∪ [0,∞) (18a)

Eb ∈
{
− µ2Z2e2

2(nb + lb + 1)2a0

}
nb=0,1,2,...

∪ [0,∞) (18b)

wherena andnb are radial quantum numbers and a0 = h̄2/me2 is the Bohr radius. To determine
the spectrum of µ we have to consider separately four subcases: (a) Ea < 0 and Eb < 0, (b)
Ea < 0 and Eb � 0, (c) Ea � 0 and Eb < 0, (d) Ea � 0 and Eb � 0. The complete spectrum
will be the union of the spectra resulting in each of these subcases.

2.2.1. The subcase Ea < 0 and Eb < 0. We have

Enala = −µ
2Z2e2

2N2
a a0

Enblb = −µ
2Z2e2

2N2
b a0

(19)

where

Na = na + la + 1 Nb = nb + lb + 1 (20)

are the principal quantum numbers. Substituting equations (19) into the constraint (12) gives
the equation for µ:

−µ
2Z2e2

2N2
a a0

− µ2Z2e2

2N2
b a0

= E. (21)

Since µ > 0, the solution to equation (21) is

µnala,nblb = Ka0

Z

NaNb√
N2
a +N2

b

(22)
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where

K =
√

2m(−E)
h̄2 . (23)

Substituting back equation (22) into equation (19) gives the final values of the separation
constants

Ea ≡ Enala,nblb = N2
b

N2
a +N2

b

E Eb ≡ Enblb,na la = N2
a

N2
a +N2

b

E. (24)

The corresponding radial eigenfunctions are

Pnala,nblb (E; r1) = Cnala,nblb r
la+1
1 exp(−knala,nblb r1)L(2la+1)

na
(2knala,nblb r1) (25a)

Pnblb,na la (E; r2) = Cnblb,na la r
lb+1
2 exp(−knblb,na la r2)L(2lb+1)

nb
(2knblb,na la r2) (25b)

whereCnala,nblb andCnblb,na la are normalization constants,L(2l+1)
n (ρ) is the generalized Laguerre

polynomial and

knala,nblb =
√

2m(−Enala,nblb )
h̄2 knblb,na la =

√
2m(−Enblb,na la )

h̄2 . (26)

2.2.2. The subcase Ea < 0 and Eb � 0. Then we have

−µ
2Z2e2

2N2
a a0

+ Eb = E (Eb � 0) (27)

hence

µnala,Eblb = kaa0

Z
Na (28)

where

ka =
√

2m(−Ea)
h̄2 =

√
2m(Eb − E)

h̄2 (29)

and the principal quantum number Na has been defined by equation (20). Since Eb varies
continuously and since the minimal value of ka , attained at Eb = 0, is K (cf equation (23)),
the eigenvalue µnala,Eblb is also continuous and lies in the range

Ka0

Z
(la + 1) � µnala,Eblb < ∞. (30)

The corresponding radial eigenfunctions are

Pnala,Eblb (E; r1) = Cnala,Eblb r
la+1
1 exp(−kar1)L(2la+1)

na
(2kar1) (31a)

PEblb,na la (E; r2) = CEblb,na laM−iηba,lb+1/2(2iκbr2) (31b)

where

ηba = µnala,EblbZ

κba0
= ka

κb
Na κb =

√
2mEb
h̄2 (32)

and Mηγ (z) is the Whittaker function of the first kind.
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2.2.3. The subcase Ea � 0 and Eb < 0. This subcase is completely analogous to the
preceding subcase. Thus, we have the continuum of eigenvalues

µEala,nblb = kba0

Z
Nb (33)

where

kb =
√

2m(−Eb)
h̄2 =

√
2m(Ea − E)

h̄2 (Ea � 0) (34)

in the range

Ka0

Z
(lb + 1) � µEala,nblb < ∞. (35)

The corresponding radial eigenfunctions are

PEala,nblb (E; r1) = CEala,nblbM−iηab,la+1/2(2iκar1) (36a)

Pnblb,Eala (E; r2) = Cnblb,Eala r
lb+1
2 exp(−kbr2)L(2lb+1)

nb
(2kbr2) (36b)

where

ηab = µEala,nblbZ

κaa0
= kb

κa
Nb κa =

√
2mEa
h̄2 . (37)

2.2.4. The subcase Ea � 0 and Eb � 0. This subcase is analogous to the case µ � 0 and
yields no eigenvalues.

3. Discussion

The results obtained in the preceding section may be summarized as follows: the whole
spectrum of the problem (6) and (7) consists of discrete positive eigenvalues given by
equation (22) with Na � 1 and Nb � 1 (note that for Na → ∞ and Nb → ∞
one has µnala,nblb → ∞) and of the continuum covering the range [Ka0/Z,∞). The
discrete eigenvalues in the range [Ka0/

√
2Z,Ka0/Z) are isolated, while those in the range

[Ka0/Z,∞) are embedded in the continuum. The discrete two-electron Sturmian functions
are antisymmetric eigenfunctions of the problem (6) and (7) of the form

Â�nalamla msa ,nblbmlbmsb
(E; r1, r2) = φ{nala,nblb}mlamsa (E; r1)φ{nblb,na la}mlbmsb (E; r2)

−φ{nblb,na la}mlbmsb (E; r1)φ{nala,nblb}mlamsa (E; r2) (38)

where

φ{nala,nblb}mlamsa (E; r) = 1

r
Pnala,nblb (E; r)Ylamla (r̂)χ 1

2msa
(39)

and similarly for φ{nblb,na la}mlbmsb (E; r). In equation (38) the angular momentum and spin
quantum numbers run over their usual ranges while the radial quantum numbers na and
nb run over non-negative integers. The two-electron Sturmians associated with continuous
eigenvalues are

Â�Ealamla msa ,nblbmlbmsb
(E; r1, r2) = φ{Eala,nblb}mlamsa (E; r1)φ{nblb,Eala}mlbmsb (E; r2)

−φ{nblb,Eala}mlbmsb (E; r1)φ{Eala,nblb}mlamsa (E; r2) (40)
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where

φ{Eala,nblb}mlamsa (E; r) = 1

r
PEala,nblb (E; r)Ylamla (r̂)χ 1

2msa
(41)

and similarly for φ{nblb,Eala}mlbmsb (E; r). In equation (40) the angular momentum and spin
quantum numbers run over their usual ranges, while Ea runs over real non-negative numbers
and nb runs over non-negative integers.

Since the discrete Sturmians (38) are associated only with a part of the whole spectrum of
the eigenproblem (6) and (7), they do not form a complete set in the space of antisymmetric
two-electron functions. The complete set, with which converged expansions of arbitrary (i.e.
describing either bound or ionized states of a two-electron atom) functions from that space may
be obtained, consists of the totality of the antisymmetric eigenfunctions (9) to the eigenproblem
(6) and (7), i.e. the discrete Sturmians (38) and the continuous Sturmians (40).
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